‘H

T JOURNAL OF
m@ GEOMETRY ko
PHYSICS
ELSEVIER Journal of Geometry and Physics 36 (2000) 211222

Generalizations of the Virasoro algebra and matrix
Sturm—Liouville operators
Patrick Marcel

CNRS, CPT, Luminy-Case 907, F-13288 Marseille Cedex 9, France
Received 25 February 1997; received in revised form 29 February 2000

Abstract

We study the series of Lie algebras generalizing the Virasoro algebra introduced in [V. Yu,
Ovsienko, C. Roger, Functional Anal. Appl. 30 (4) (1996)]. We show that the coadjoint represen-
tation of each of these Lie algebras has a natural geometrical interpretation by matrix differential
operators generalizing the Sturm-Liouville operators. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The starting point of our work is a deep relation between the Virasoro algebra and the
space of Strum-Liouville operators remarked by Kirillov [5,6] and Segal [14]. Space of
Sturm-Liouville operators gives a natural realization for the coadjoint representation of the
Virasoro algebra. This important relation leads to the classification of the coadjoint orbits
of the Virasoro algebra [5]. Moreover, it is well known that the Korteweg—de Vries equation
appeared as the Euler equation of the Virasoro—Bott group [10,15], which increased the
interest of the coadjoint action of the Virasoro algebra.

In this paper, we extend the Kirillov—Segal result to Lie algebras generalizing the Vira-
soro algebra: we present relations between these algebras and Sturm—Liouville type matrix
operators and we give a realization for the coadjoint representation of these Lie alge-
bras. The corresponding Korteweg—de Vries-type equations will be studied in a subsequent
paper.

These results are obtained by a method due to Kirillov [5], using the Neveu—-Schwarz and
Ramond superalgebras generalizing the Virasoro algebra. The Lie superalgebras generaliz-
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ing the extensions of the Virasoro algebra studied in the present paper have been classified
in [9]; this paper is a natural continuation of [9].

It is worth noticing that an analogous approach has been applied in [7] to another class
of Lie superalgebras generalizing the Virasoro algebra, so-called stringy superalgebras.

1.1. Virasoro algebra

Let VectS1) be the Lie algebra of smooth vector field 8h: f = f(x)(d/dx), where
f(x + 27) = f(x), with the commutator
d d d
J) ==, 8(x0) — | = (f()g' &) = f(x)gx)) —.
dx dx dx
The Virasoro algebrais the unique (up to isomorphism) non-trivial central extension of
Vec(sY). Itis given by the Gelfand—Fuchs cocycle:

d d , ,
clfx)—,gx)— | = f Ff(x)g"(x)dx. (1)
dx dx 51
Denote byVir the Virasoro algebra.
1.2. Space of Sturm-Liouville operators as a V&tt-module

Consider the space &turm-Liouville operators
d2
L =—2c o +u(), 2

wherec € R andu is a periodic potentiak: (x + 27) = u(x) € C*(R).

Following classicial works we define a natukédct S1)-module structure on the space
of Sturm—Liouville operators.

Let F, be the space of all tensor densities®nof degreex : a = a(x)(dx)*. The Lie
algebraVect(s1) actson F; by the Lie derivative

L @jan@ = (0@ () + A (x)ax)) (dx)*. 3)
Let us consider the Sturm-Liouville operators as operators fFam; to Fz/2:

L:F_1/2— Fz.
Definition 1.1 (cf. [6,16]). The action of a vector fielgh(d/dx) on a Sturm-Liouville
operatorL is given by the commutator

3/2 -1/2
T(rdjdo (L) = L%/éx oL—1Lo L(fd/{ix)‘ (4)
The result of the action (4) is a scalar operator of multiplication by a function

T fdjdey(L) = fu' + 2f'u — cf .
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Note that a scalar operator is a Sturm-Liouville operator wita 0, and therefore, the
space of Sturm—Liouville operators is indeedex(s1)-module.

1.3. Coadjoint representation of the Virasoro algebra

Following Kirillov [6], we consider theregular part Virg, of the dual space to the

Virasoro algebraVirp,, can be identified to the spade @ R. The pairing(, ) : Virg ®
Vir > Ris

2 d 27
<<u(x)dx >7(fa>>:/ w(x) f(x) dx + car.
c1 r 0

The following fact shows that théect S1)-module of Sturm—Liouville operators is a natural
realization of the coadjoint representation of the Virasoro algebra [5,6,14].

Theorem 1.2(Kirillov [6], Segal [14]). The coadjoint action of the Virasoro algebra on
Virjg coincides with the Vees®)-action (4).

Proof. From the definition of the coadjoint action:

(55
)R]

one obtains by direct calculation

. <u(dx)2 > ( fu +2fu—c1 f’”)(dx)z)
ad = .
( fd/dx ) c1 0

r

O

Remark 1.3. Note that the coadjoint action of the Virasoro algebra is in fact a &t
action(the center acts trivially

2. The Ovsienko—Roger algebras

Let us consider a series of nine Lie algebras generalizing the Virasoro algebra.
These Lie algebras are defined egensionsf the Lie algebravects!) by the mod-
ules of tensor densities a§tt. These extensions have been introduced by Ovsienko and
Roger in [11] (see also [12]). Let us recall here the main definitions (see [11] for more
details).
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2.1. Central extension of the semi-direct product \&bt x F;

Let us first recall the classification of the central extensiovexf(Sl) x F,. These

extensions exists if and only if = 0 or 1, cf. [11]. We have

5 L RS for A=0,1,
H?(Vec(SY) x F: R) =

0 for A#£0,1

Each of the algebragect S1) x Fo andVect S1) x F; has a three-dimensional non-trivial
central extension given by the following 2-cocycles.
e For both algebras, the continuation of the Gelfand—Fuchs cocycle (1):

c((fra), (g, b)) = /Slf/(x)g”(x) dx. (5)

Notice thatc does not depend anandb.
e Two more non-trivial 2-cocycles in each case:
(a) Fora =0,

d d
01 <<fa a(X)) ; <ga, b(X))) = /Sl(f”(X)b(X) — g"(x)a(x)) dx,

d d
02 ((fd—, a(X)) , (gd—, b(X))) = / (a(x)b'(x) — b(x)a'(x)) dx.
X X 51
(b) Forx =1,

d d
03 <<fa adx) ; (gay bdx)) = /Sl(f/(X)b(X) — &' (0a(x)) dx,

d d
o4 <<fa, adx) , (ga bdx)) = /Sl(f(x)b(x) — g(x)a(x))dx.

Notation 2.1. Denote, respectively, byl; and A, the three-dimensional extensions of
VectS1) x FogandVectSt) x Fi.

2.2. Extensions of Ve@!) by F;

Consider the Lie algebras given by extension¥ed( 1) with coefficients invects1)-
modules of tensor-densities. The classification of these non-trivial extensions is given by
the following result [2]:

R2 for A=0,1,2,
H?%Vec(SY); F,) =4 R for »=5,7,
0 forr#0,1,25,7.

The corresponding non-trivial cocycles were given in [11].
1. Forr = 0,1 =1, = 2, there are two non-isomorphic non-trivial extensions.
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Let us give the 2-cocycles oveciSt) with value inF; representing the non-trivial
cohomological classes:
e fora =0,

co(f, g) = f f'(x)g” (x) dx (case of the Virasoro algehraere
Sl

co(f, g) is a constant function o),
co(f.8) =1d — f'g;
o fora =1,
c1(f,8) = (f'¢" — f"g)dx and ¢1(f, g) = (fg' — f"g) dx;
e forx =2,
caf,0) = (f'g" — f"ghdx? and &(f, g) = (fg” — f""g) dx®.

2. Forx =5, = 7, there is a unique non-trivial extension, the 2-cocycles are:
e forx =5,

es(f.8) = (f"g™) = rMg") da®;

o fOra=7,

" "

f g
cr(f, 8) = (2‘ f(v|) g(v|)

FOV) V)
—9' VW

> (dx)”.

Notation 2.2. Let us denotéj; as the Lie algebras given by the non-trivial cocyeleand
G: the Lie algebra given by the non-trivial cocyclgs

2.3. Central extension of the Lie algebm@sandg;

Let us describe now the central extensions of Lie algeGramdg; [11,12].
1. Each algebrg;, G; has a non-trivial central extension given by the 2-cocycles (5).
2. There exists two more non-trivial central extensions:

e a central extension of Lie algeb@ given by the 2-cocycle

d d
o5 <<f a,adx> ; (g a»bdx)) = /Sl(f/(X)b(X) — g (0a(x)) dx;

¢ a central extension of Lie algebga given by the 2-cocycle
o6 fi,adx , gi,bdx =/ (f(x)b(x) — g(x)a(x)) dx.
dx dx 51

Notation 2.3. Let us denoteds and A4 as the two-dimensional central extension of
G1 and @, respectively. Denotels, .. ., Ag as the one-dimensional central extension of
Go, G2, G2, Gs, G7, respectively.
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3. Generalization of the Kirillov—Segal result

In this section, we will extend the Kirillov—Segal result to the case of the Lie algebras
Ai,i =1,2,...,8. Itturns out that these algebras are related to some interesting classes
of differential operators that we call matrix Sturm—Liouville operators.

3.1. Matrix Sturm-Liouville operators

We will define a space of matrix operators associated to each of the Lie algebras defined
in Section 2. These operators can be considered as generalizations of the Sturm-Liouville
operators. The constructed spaces of operators give a geometric realization for the coadjoint
representation of each algebda, i =1, 2, ..., 8, analogous to those in the Virasoro case.

We will show that in the case of Lie algeh#y, such a realization does not exist.

Definition 3.1. We will consider matrix differential operators of the following form:
2 d
—2c1@+u(x)+A t(x)a+w(x)
L= : (6)

d
—t(x)— + w(x) m
dx
whereA is some scalar linear differential operator and, w are 2r-periodic functions,
m € R.

Let us associate to each of the Lie algebdasi =1, 2, .. ., 8, a space of operatorsof
the above form (6). The explicit form &f is given in Table 1 in whicla;, c3 are constants,
v = v(x) is a 2r-periodic function andsg is given by

o o o B, P
Ig=14 — + 420 — + 45" — + 200" — + ") —.

dx6 dx® dx4 dx3 dx2
Table 1
Lie algebras Operatos

A t w w m

A1 0 c2 v v 4cs
Ao 0 c2 %(v’ —c3) %(U/ —c3) 0
As —411% - 4v’d% c2 %U’ %v’ 0
Ag -/ 0 %(v’ —c2) %(v’ —2) 0
As v 0 v v 0
Ag —21/&1—22 + 21)”% v %v’ %v/ 0
Az 2vdd—22 +2v’%+v” v %v’ %v’ 0
Asg Ig 0 v v 0
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Remark 3.2. The case of algebral; and the corresponding space of matrix operators has

been considered if8].
We will give a generalization of the action (4) from Section 1.2 for each of the defined

spaces of operators (6) and the Lie algebtasTo define a/ects1)-module structure, and
more generally, atd;-module structure on each space of operators (6), we consider, as in
Section 1.2, operatois as acting on tensor densities:

L:F_10®F) — FapdF, (7)

where the value of andv depend on the algebr4;.
We will define actions of Lie algebrad; on F_1,> ® F» andF3,2 & F,.

3.2. Modules of tensor densities
3.2.1. Two families of modules over the semi-direct product
Let us first consider the action of the semi-direct prodéeti(S1) x F; on the space

Fu. ® F,. It turns out that there exists two natural families\@&ctS1) x F;-module,
correspondingte = u+Arandp = u+ A + 1.

Definition 3.3. Vec(S1) x F, acts on the spacg, @ F,+, as follows:

r ¥ (dx)® L%)/dxw o
fd/dx = ’
o) (i

wherek is a parameterk € R.

Definition 3.4. Vec(S1) x F, acts on space#, ® F4.+1 by

- ¥ (dx)* L%)/dx‘p 9
( s ) B(dx)rtrt+l N 1, (kD) k Il ' ©
a(dx)* fd/dx B+ k(ua AY'a)

Remark 3.5. Theterm(uya’ —Ay'a) is the Poissoifor Shoutehbracket which we denote
asJ1(y dx*, a dx?), see e.g[4]. Itis easy to see that formuld8) and (9)indeed define a
Vec(S1) x F,-action

3.2.2. Deformation of the module structures
Except for the algebragl; and. A, whose action is a semi-direct product action, the
actions of Ovsienko—Roger algebras on the spd&g F,, andF, © F, 1,41 are
obtained by deformations of the actions (8) and (9). We are lookingifeaictions in the
following form:
(a) First type

oy () =70y () G ) ®

a
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(b) Second type

i(f)(ﬁ)ZT(g)@)*(w?w)’ ©

a

wheres (resp.5) is a bilinear mapping fronvects') @ F,, with value inF, ; (resp. in
Fu+1+1)- Note that the center of each algebtaacts trivially.

Let us give some details about the cohomologic nature of the maphitigscase of is
analogous. Consider a Lie algebta i = 3, .. ., 8. Denote by the 2cocycleonVec( s
with values inF; defining the extensiog; (or G;). Let us define the following mappings:
e thecochain son Vect$?) with values inHom(F,, F,.+,) defined by

s(HW) :=35(f,¥),
e the 2cocycleé on Vectst) with values inHom(F,,, F,+5) defined by

c(f, )W) == vYcg(f, g).

Remark 3.6. In the case of the2-cocyclec is defined by

c(fs W) == iy, cg(f, 8))-
One obtains immediately the following proposition.

Proposition 3.7. Formula(8') defines an action of the Lie algbey if and only if
ds = —kc. (10)

Proposition 3.7 follows directly from usual definitions.

Remark 3.8. Note that if s is a solution dfL0) andso a 1-cocycle on Ve¢s?) with values
in Hom(F,,, Fu+1), s + so is also a solution 0{10).

3.2.3. Actions of Lie algebrad;
Let us first precise, for each algeb#g, the spaces of tensor densities considered in (7).
e Inthe case of algebrady, .. ., As, operatorsC are considered as operators on spaces:

L:F_12® Fr2 — Fz/2® Fujz.

e Inthe case of algebrade and.A7, operatorsC are considered as operators on spaces:
L:F_12® Fzj2 = Fz2® F-1)2.

¢ In the case of algebrdg operatorsC are considered as operators on spaces:

L F_12® Fryz = Fz2® F_g)2.
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We will define the action of each of the Lie algebtdson the above spaces of tensor
densities. We will show in the next section the relation of this action with the matrix
Sturm-Liouville operators (6).

Proposition-Definition 3.9. There exist the following actions of the Lie algebrdson

spaces of tensor densities

1. AjactsonF_1» @ Fi/2 and Fz/2 @ Fy/2 via formula(9) with k = 1.

2. Az acts onF_y1/2 @ F1/2 and F32 @ Fyj2 via formula(8) withk = 1 andk = -1,
respectively!

3. Az acts onF_y» & F12 and Fz» @ F1/» via formula(8’) with

S(fvdi Y% = 27y dx2 and k=1,
S(f, v dx¥?) = —2(F'y' + vy dx¥? and k= —1,

respectively
4. Agacts onF_y2 @ F1/2 andFzj2 @ Fi/2 via formula(8’) with

S(f,vde V%) = —2fy dx¥? and k=1,
S(f Y et = —2(fy + fly)dx¥? and k= -1,

respectively
5. As acts onF_y» & F1/2 and Fz» @ F1/» via formula(9’) withk = 1 and

S(f, v dxY?) = fy dxt/?
Sy Y2 = (fy' + fly)da®/?,

respectively
6. As acts onF_1/» @ Fz2 and Fz;2 @ F_1/» via formula(8’) with

S(f,pde %) = —2fy"dx¥? and k=1,
S(fyde V2 = @'y +4f"y +2f"y)dx¥? and k= —1,

respectively
7. A7 acts onF_y» @ F32 and Fz;2 @ F_1/2 via formula(8’) with

S(fydi Y% = —2fy " dx¥? and k=1,
Sy de Y2 = @y +Af'y +2f y)dx¥? and k= —1,

respectively
8. Agacts onF_1,2@ F11/2 andFz 2@ F_g,2 Viaformula(9) withk = 2,and respectivety

g(f, v dx—l/Z) — (SfWW(IV) _ 1Of(lv)1/fw + 3f(V)wN) dxll/Z,

1 Note thatA4; and.A; are just central extensions of the semi-direct product.
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S‘(f, w dxfg/Z) — (_18f(V||)¢ _ 56f(VI)w/ _ 63f(lv)¢// _ 30f(|V)1p///
—5f/”1//(lv)) dx3/2.

Proof. Straightforward calculation. O

Remark. The mappings and s can be defined modulb-cocycles(cf. Section3.2.2).
However, the considered actions are uniquely defined by their relations to the matrix
Sturm-Liouville operators. It can be proven that the defipgdactions on the spaces

of tensor densities are the unique actions corresponding tolthactions on the spaces of
matrix Sturm—Liouville operators

3.3. Main result: spaces of matrix operatgras an.A4;-module

In this section, we define the action of Lie algebfaon the corresponding space of
operatorsC from Table 1. This definition is analogous to (4) in the cas8tofm—-Liouville
operators and provides a geometric realization of the coadjoint actidp. of

Proposition 3.10. Each of the Lie algebrad; fori = 1, ..., 8 acts on the corresponding
space of matrix Sturm—Liouville operators as follows

T (Li)=TioLi—LioT, (11)

where7; are the actions given in Propositidh9.

This proposition is a generalization of Definition 1.1 to the algebtaand operatorg
associated.
The main result of this paper is the following.

Theorem 3.11. The action(11) coincides with the coadjoint action of the Lie algebda

The proof can be obtained by a straightforward calculation.

We hope that such a realization can be useful for the theory of KdV-type integrable
systems related to the Lie algebrés for the study of the coadjoint orbits of these algebras,
etc. (cf. [6] for the Virasoro case).

4. Negative result: case of Lie algebradg

The generalization of the Kirillov—Segal result does not hold in the case of algkbra
The semi-direct produdtec(s?) x F7 acts onF_1/> ® F13/2 by (8) and onF_1,» @ Fis/2
by (9), we are thus looking for a deformed actiondafon F_1 /2@ F13/2 andF_1/2® Fis2
via formulae (8) and (9).

Proposition 4.1. There is na4dg-module structure on spaceés 1,2 @ Fi32 andF_12 @
Fis/2 in class of actiong8’) and (9').
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Proof. Under the notations of Section 3.2.2, we will show that there is no deform&sion
(resp.7§) of the action of the semi-direct produdeci(s?) x F7 on spacef_1,2 @ F13/2
(respF_1/2®F1s5)2). Letus give the details in the case of actigrand spacé_1,2®F13/2.
The proof uses the notion of transvectants. Let us first recall the main definitions.
Consider the bilinear mappings on tensor densitigs: ), @ F,, = Fiiputk With &
integer defined by

k k-1
-k o
A wy i _ _ _ _ (k—i) 1, (i)
Jie(adx™, bdx") = -_EO( 1) (l> |‘_|.( 2 —r)(—21 — s)a b, (12)
The operations (12) are the so-called Gordan’s transvectants [3] (rediscovered by Rankin
[13] and Cohen [1] in the theory of modular functions).

Consider the Lie subalgebra déctS1) generated by the vector fields:
d d ,d

dc tdet dr

wherex is the affine parameter dRP! = $1. This subalgebra is isomorphic i (R). It
is well known that for eaclk, the mapping/; is the uniquesly-equivariant on the tensor
densities.

Under the above notations one has the following lemma.

Lemma 4.2. Suppose that the Lie algebrég acts on the spac&_1,»> @ F13/2. Then the
complementary tery( £, ¥) from (8') is necessarily skequivariant

Proof. Considerthe commutator ofy. This commutator can be written with transvectants;
exactly we have (up to a constant)

d d
c7(f, &) = Jo( [, 8. [f(X)a, g(X)a} = J1(f.8), Lyb=Ji(f bdx").

We have the same result for the action (8) from Section 3.2.1 glace= Jo(y, a}.
Hence Lemma 4.2 is proven. U

The property ofl-equivariancemplies that the ternd( f, v) of Ty is (up to a constant)
$(f,¥) = Jg(f, ¥). Indeed, the transvectas is uniquesl-equivariant mapvectst) @
F 172 — Fizpe.

Lemma 4.3. The mapTy given by(8) with §(f, ) proportional to Jg(f, ) does not
define an action of the Lie algebrdg on spaceF_1/> & F13/2.

Proof. Straightforward calculation. O

We have the same result f@§ given by (9) with 5(f, ¥) = Jo(f, ¥). Proposition 4.1
follows from Lemmas 4.2 and 4.3. O
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Remark 4.4. In the case of algebralg, Lemmad.2is still valid, so that the term(f, )
given in(8) is necessarily stequivariant This is verified, sincéup to a constant
e inthe case of the action afi_1/> @ F11/2, one had

§(f, w dx*l/Z) — (Sf///¢(lv) _ 10f(IV)wW + 3f(V)¢//) dx11/2 — J7(f7 w dx*l/Z);

e inthe case of the action afiz;» © F_g/2, one had

5(f, ) = (—18f Dy —5erDy’ _ g3rIV)y”
_30f(IV)1///// _ 5f///w(|V)) dx_3/2
= J7(f. ¥ dx~ %),

But in the case of algebtdsg, Tg is indeed andg-action.
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